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New Look at Gleason's Theorem for Signed Measures 
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It is shown that the Gleason theorem holds not only for a finite but also for an 
n-finite signed measure m, where n is a cardinal, defined on all closed subspaces 
of a Hilbert space whose dimension is a nonmeasurable cardinal # 2, if m is 
bounded from below on all one-dimensional subspaces. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

In  the q u a n t u m  logic  a p p r o a c h  to the  ax ioma t i c  f ounda t i on  o f  q u a n t u m  
mechan ics  an impor t an t  role  is p l ayed  by  the qua n tum logic  ~T(H) o f  all 
c losed  subspaces  o f  a (not  necessar i ly  sepa rab le )  Hi lber t  space  H over  the 
field C o f  real  or  comp lex  numbers .  A s igned measure  on ~ ( H )  is a func t ion  
m : ~ T ( H ) ~ [ - ~ , ~ ]  such tha t  (1) m ( 0 ) = 0 ;  (2) m is o--addit ive on all 
sequences  o f  mutua l ly  o r thogona l  e lements  o f  ~ ( H ) ;  (3) f rom the poss ib le  
va lue  + ~  it a t ta ins  at most  one. A s igned measure  m is b o u n d e d  i f  
sup{Ira(M)] :  M c H}  < co. A posi t ive  s igned measure  is said to be a measure .  
The f amous  theo rem of  G l e a s o n  (1957) says that  any  finite measure  m on 
a sepa rab le  Hi lbe r t  space  H, d im H ~ 2, is in one- to -one  c o r r e s p o n d e n c e  
with pos i t ive  Hermi t i an  ope ra to r s  T on H o f  finite t race via 

m ( M ) = t r ( T M ) ,  M ~ T ( H )  (1) 

(we iden t i fy  a subspace  M with  the o r thop ro j ec to r  pM on it). 
Shers tnev  (1974) p roved  that  fo rmula  (1) is also correct  for  all b o u n d e d ,  

s igned measures  o f  a s epa rab le  Hi lbe r t  space  H, d im H # 2. Dr isch  (1979) 
showed  tha t  the  a s sumpt ion  o f  separab i l i ty  is superf luous  when the Hi lbe r t  
space  is o f  n o n m e a s u r a b l e  ca rd ina l i ty  (for  def in i t ion  see below).  

The s i tua t ion  with s igned measures  a t ta in ing  infinite values  is more  
c o m p l i c a t e d  and  it needs  the  fo l lowing  not ions .  By T r ( H )  we denote  the 
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class o f  all bounde d  operators T in H such that, for every or thonormal  
basis {x~: a ~ A} of  H, the series ~a~A (Txa, x~) converges and is indepen- 
dent o f  the basis used; the expression tr T : = ~ A  (Txa, xa) is called the 
trace o f  T. 

A bilinear form is a funct ion t: D(t) x D(t) ~ C [ D ( t )  is a submanifo ld  
o f  H, not  necessarily dense or closed in H, named  the domain  o f  definition 
o f  t], such that t is l inear in both  arguments,  and t(ax, fly)= a~t(x, y),  
x, y ~ D( t ) ,  a, fl ~ C. A bilinear form t is said to be symmetric  if t(x, y) = 
t(y, x) for all x, y c D(t). A symmetric bilinear form t is called (1) positive 
if t(x, x) >- 0 for all x c D ( t ) ;  and (2) semibounded  if there is a finite constant  
K - 0  such that t(x,x)>--K for all x~D(t).  

Let P c  A~(H) and let p c  D(t). Then by t o P we mean  a symmetric  
bilinear form defined by t o P(x, y) = t(Px, Py),  x, y c H. I f  t o P is induced 
b y  a trace opera tor  T, that  is, toP(x,y)=(Tx, y), x ,y~H, then we say 
t o P ~ T r ( H )  and we define tr t o P = tr T. 

A signed measure m is said to be (1) f - b o u n d e d  ifsup{[m(Q)[:  Q c p} < 
oo whenever  [m(P) [<oo ;  (2) n-finite if there is a system of  mutual ly  
or thogonal  elements {Ma: a ~ A} such that H = < ~ A  M~ and Im(Ma)l < ~  
for each a ~A,  and the cardinal o f  A is n. I f  n = N o ,  we say that m is 
o--additive. Here by Oi~ i  Pi we mean the join o f  mutual ly  or thogonal  
elements P~ c ~ ( H ) ,  i~  I. For  any 0 # x c  H we denote  by P~ the one- 
dimensional  subspace o f  H spanned over x. 

In  Dvure~enskij (1985) it is proved that, for any o--finite, f - b o u n d e d  
signed measure rn on ~ ( H )  o f  a Hilbert space H whose dimension is a 
nonmeasurable  cardinal ~ 2, re(H) = oo, there is a unique symmetric  bilinear 
form t with a dense domain  D(t) such that 

m(P)={t~ t~  elsewhere if m ( P )  <oo  (2) 

We recall, according to Ulam (1930), that  the cardinal I is nonmeasur -  
able if there is no nontr iviaLposit ive measure v on the power  set 2 A of  a 
set A whose cardinal is I, such that p ({a}) - -0  for  any a 6 A. It is evident 
that  all finite cardinals and No are nonmeasurable .  Assuming the con t inuum 
hypothesis,  e (cardinal o f  reals) is a nonmeasurable  cardinal. 

2. F R A M E  F U N C T I O N S  

The corners tone o f  the Gleason theorem is the not ion o f  a frame 
function. Denote  S(H) = {x c H :  [[x[[ = 1}. A function f :  S(H)--> [-oo, oo] 
is a frame funct ion if (1) f (Ax)  =f(x) for all scalars A ~ C with Ih[ = 1; (2) 
there is a constant  W (may be :Loo), named  the weight o f f ,  such that, for  
any or thonormal  basis {xa: a c A} of  H, ~a~Af(xa) = W. A frame funct ion 
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f has a finiteness property if [~i~1f(xi)[ < oo, for some orthonormal system 
of  vectors {xi: i e  1}c  H, implies f [S (G)  is a frame function with a finite 
weight, where G = G ~ Px,. It is evident that any frame function with a 
finite weight has the finiteness property. A frame function f is regular if 
there is a positive symmetric bilinear form t with 

D( t ) = {x e H: x ~ O, If(x~ Ilxll) < ~ {0} 

such that f ( x )  = t(x, x) for any x e S ( H )  n D(t) .  
Let n be a cardinal. We say that a frame function f is n-finite if  there 

is a system of mutually orthogonal subspaces {Ma: a e I}, 0 a~1 M~ = H, 
such t ha t f l S (Mo)  is a frame function with finite weight for any a e I, and 
the cardinal of  I is n. In particular, if n = No, we say that f is a-finite. A 
frame function f is called (1) finite if If(x)[<~ for any x e S ( H ) ;  (2) 
bounded if sup{If(x)l: x ~ S(H)} < oo, and (3) semibounded if inf{f(x):  x e 
S(H)}  > - ~ .  

Let n be a cardinal. We say that a function m: ~(H)--> [ - ~ ,  ~ ]  with 
m (0) = 0 and which, from the values •  attains at most one is (1) n-additive 
if, for any system of mutually orthogonal subspaces {M~: a e I}, card 1 = n, 
we have 

m ( ( ~ ,  M~)=E,~I m(Ma) (3) 

and is (2) totally additive if equation (3) holds for any I with an arbitrary 
cardinal. 

Proposition 1. Let m be a totally additive signed measure on a quantum 
logic 5 f (H)  of an arbitrary Hilbert space H. Then a map f defined via 

f ( x )  = m(Px), Ilxll = 1 (4) 

is a frame function with the finiteness property. Conversely, l e t f  be a frame 
function with the finiteness property; then a map m on ~ ( H )  defined via 

0 if M = 0  

m ( M )  = ~f(x~),  {xi} is an orthonormal basis in M (5) 
i 

is a totally additive function. This rn is unique in the sense that (4) holds. 

Proof The first part  of  the proposit ion is evident. For the second part, 
we take into account that if the weight W of the frame function f is, for 
example, + ~ ,  then, for any orthonormal basis {x~, a e A} in H and for any 
@ # A~ ~ A, ~aEA 1 f ( x , )  > -oo. In fact, if, for at least one a e A 1 , f (x~)  = oo, 
then ~ A ~ f ( x a )  = +O0. NOW suppose f ( x , )  ~ +oo for any a e AI. Let K > 0 
be given. The weight W implies that there exists a finite Bo c A such that, 
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for any finite B, B o c B c A ,  ~ z f ( x a ) > K .  Hence,  for any finite J c  
A1, Y~zo f (Xa)  > K. Thus 

Y~ f ( xa )>  K - K ,  (6) 
J~(Bo~AI) 

where K1 = Y~ ~o ~ A2 f(x~ ) and A2 = A - A i. 
Consequent ly ,  (6) implies that ~ a l  f(x~) # -oe. 
The finiteness proper ty  o f  f entails that  m is well defined, and m is 

totally additive on 5F(H). �9 

Proposition 2. Let 3 < dim H = n < oe and let f be a frame funct ion on 
H with the finiteness proper ty  and with an infinite weight. I f  ]f(xi)[ < oe, 
for i =  1 , . . . ,  n - l ,  and I f ( z ) ]<co ,  where xi_l_ x~ whenever  i # j ,  then z e 
alXl + �9 �9 �9 + a,_~x,_~ for some scalars a a , . . . ,  o~,_a ~ C. 

Proof The same  as Corol lary  2 in Dvure~enskij (1986). �9 

Theorem 3. Let 4_< dim H < co and let f be a semibounded  frame 
function with the finiteness proper ty  and infinite weight. I f  there are three 
mutual ly  or thogonal  vectors xl, x2, x3 such that  Y~=, [f(x~)[ < co, then f is 
a regular frame function.  

Proof Due to Proposi t ion 2, we see that if we put  

M = {x c H: x r O, If(x~ ]Ix II)l < co} u {0} 

then M ~ 5r  and dim M---3.  Proposi t ion 1 says that f l S ( M )  determines 
a signed measure m ~  on ~ ( m )  via (5). Let x z  M, [[x[[ = 1. Then 

f ( x )  = m ~ ( M ) -  ~ f (x i )  (7) 
i = 1  

where x ~ , . . . ,  x~ are mutual ly  or thonormal  vectors f rom M and or thogonal  
to x. Hence ,  If(x)I_<ImM(M)I+rK, where  r = d i m M - 1  and K =  
- i n f { f ( y ) :  y c S(M)}.  

We proved f l S ( M )  is a bounde d  frame function. Using the familiar 
assertion on bounde d  finite frame functions on finite-dimensional Hilbert 
space, we see that f l  S ( M )  is a regular frame function. �9 

Theorem 4. Let H be a real or  complex  Hilbert space o f  d imension ~ 2. 
Then any semibounded  frame function with a finite weight is regular. 
Moreover ,  there is a unique T c  T r ( H )  such that 

f ( x ) = ( T x ,  x), x e S ( H )  (8) 

Proof Define a map  F on H via 

{0 for x = 0  
F ( x ) =  Ilxll2f(x/llxll) for x ~ 0  

(9) 
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Now we shall define a semibounded symmetric bilinear form t defined 
on the whole of  H. Let M be any three-dimensional subspace of H. As in 
(7), we see t h a t f  I S ( M )  is a bounded frame function. Due to Dvure~enskij 
(1978), there is a positive Hermitian operator TM c Tr (M)  such that F(x)  = 
(TMx, x) for any x c M .  

Let now x , y ~ H .  Define t (x ,y)=(TQx,  y), where Q is some two- 
dimensional subspace of  H containing x, y. Since any two-dimensional Q 
may be embedded into some three-dimensional subspace M, we see that t 
is a well-defined symmetric semibounded bilinear form in question. In fact, 

if  x, y ~ Q1 c~ Q2 

( TQ X, y) = t(x, y) = ( TQ2X , y) 

Now we claim to show that t is a bounded bilinear form. Proposition 
1 entails that, for any M ~ ~ ( H ) ,  there is a unique finite signed measure 
mM on ~ ( M )  determined by f[ S(M).  

1. Let dim M = n -> 2. Then, for any x c S (M) ,  

n- - I  

t(x, x) = m M ( M ) -  • t(xi, xi) 
i = 1  

where x l , . . . ,  x,  i is an orthonormal basis in M n P~. Hence tIS(M) is 
bounded.  

2. Let M =  M~OM2, and let t lS(MO and tIS(M2) be bounded sym- 
metric bilinear forms. We assert that so is t I S(M).  

Indeed, let x ~ S ( M ) .  Then x=x~+x2 ,  where xi=Mix,  i = l , 2 .  
Calculate 

t(x, x) = t(xl ,  xl)+ t(x2, x2)+2 Re t(x1, x2) 

By assumption, It(xi, xi) I <_ Kiltxill 2, i =  1, 2, where Ki = 
sup{It(x, x)l: x ~ S( Mi)}, i :  1, 2. 

A bilinear form s ( f g ) : = t ( f g ) + K ( f , g ) , f ,  g c H ,  where K =  
- inf{t(x,  x): x c S(H)}  is a positive symmetric bilinear form. The Schwarz 
inequality implies 

Re s ( f  g) <--IRe s ( f  g)l -< { I t ( f  f )  + K Ilfll=][ t(g, g) + g IIg[12]} '/2 

and 

Re t(f, g) -< { [ t ( f  f )  + K Ilfll2][t(g, g) + K Ilg ]123) 1/=- K Re(f, g) 

Therefore 

2lRe t(Xl, x2)l-< 2[(K1 + K )( K2 + K ) ] 1/2 

This proves that t I S ( M )  is bounded. 
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3. Here we show that t is bounded on S(H) .  If  not, then there exists 
e~ ~ S ( H )  with t(ex, el) --- 1. Applying part 2 to M~ = P~,, we see that tl S(MO 
must be unbounded. Therefore, there is e2 Z e~, lie211 = 1, with t(e2, e2) -> 1. 
Continuing, according to induction, we find after n steps a vector 
e,+,, Ile.+,ll = 1, orthogonal to e l , . . . ,  e, ( e a , . . . ,  e, are orthonormal vec- 
tors) with t(e,+~, e,+a)-> 1. Define M=@,~__~ Pe,,, and let mM be a finite 
signed measure on 5f(M) from Proposition 1. Then 

cx) 

mM(M)  = mM(Pe~ = E t(e,,  e , )=oe  
n--1 n= l  

which contradicts the finiteness of mM, and, therefore, t is a bounded 
symmetric bilinear form. 

Hence, there exists a unique Hermitian operator T on H such that 

f(x)=t(x,x)=(Tx, x), Ilxll=l 

Finally, the finiteness of the weight o f f  gives us T c  Tr(H). �9 

Theorem 5. Let H be a real or complex Hilbert space of dimension # 2 
and let n be any cardinal. Then any n-finite semibounded frame function 
with the weight belonging to (-oe, co] and with the finiteness property is 
regular. 

Proof If  the weight W o f f  is finite, the assertion follows from Theorem 
5. 

Now let W = + o e .  Define a map F on H via (9). Put D ( F ) =  
{x ~ H: F(x)<oe} .  We claim to show that D ( F )  is a dense submanifold in 
H. Let x, y ~ D(F) .  Due to the n-finiteness of f, we have that there exist 
three orthonormal vectors x~, x2, and x3 and 

0 ~ Z "= O~lX 1 ~- O~2X2 q- O/3X 3 _]_ X, y 

3 
and Px ~ 0 r  Py, where P = @ i = l  Px,. Proposition 2 implies that f I S ( M ) ,  
where M = Pz v Px v Py is a finite frame function; hence F ( x + y )  <oo. The 
n-finiteness o f f  gives the density of D(F) .  

Now we shall define a semibounded symmetric bilinear form t defined 
on D(F) .  As in the proof of Theorem 4, we can prove that, for any 
two-dimensional Q c D(F) ,  there is T o ~ Tr(H)  with F(x )  = ( Tox , x), x 
M. Defining t(x, y) = ( Tox , y) for some two-dimensional Q containing x, y 
we prove the theorem. �9 

Remark 1. It is known (see also Proposition 6) that if dim H = 2, then 
there are finite frame functions that are not regular. On the other hand, not 



Gleason's Theorem 301 

any bilinear form with a dense domain determines a frame function. In 
e co fact, let { ,},=1 be an orthonormal basis of a separable Hilbert space H. 

e oo Suppose that { ,},=1 is a part o f a  Hamel basis {g~: t~ T}. Fix a unit vector 
g~o~{g,:t~T}-{en}n~176 and define a linear operator B in H via 
B(~,~7- ~ a,gt) = a~g~, where To is the finite part of  T containing to, and at 
are scalars. The positive symmetric bilinear form t( x, y) := ( Bx, By), x, y ~ H, 
does not determine a frame function, since t(e, ,e,)=O, n>_l, and 
t(g~, g~) = 1. This example is from Lugovaja and Sherstnev (1980). 

3. FINITE SIGNED MEASURES 

As has been noted, Sherstnev (1974) generalized the Gleason theorem 
to bounded signed measures, remarking that (1) is true even if 
sup{lm(Px)l: x c S(H)} < oo. Drisch (1979) formulated his result only for 
bounded signed measures. In this section we show that for the validity of 
(1) both of the above conditions may be weakened. 

The positive and negative variations m + and m-  of the signed measure 
m are defined as follows: 

m+(M) = sup{m(N):  N c  M} 

re-(M) = - in f{m(N) :  N c  M} 

for any M~s The total variation of m is the map Iml:=m§ -. 
Some properties of variations of m are: 

1. m +, m-,  Iml are nonnegative. 
2. m + = - m - a n d  m - = - m  +. 
3. If  M c  N, then m+(M)<-m+(N) and m-(M)<-m-(N) .  
4. m+(OT=1M,) > ~ - - • , = l m + ( M , )  and m (@,=IM,)>-E~_lm-(M,) .  
5. m+(0) = m-(0) =0.  
6. Im(M)l-Iml(M) for all M e ~ ( H ) .  
7. If  m: ~ ( H ) ~  ( - m ,  co], then m + m - = m + ;  

if m: Ze(H) ~ I - m ,  m), then - m  + m + = m-. 

In conventional measure theory it is known that any finite signed 
measure has finite positive and negative variations. This result is not valid 
in quantum logics, in general; see also Sherstnev (1974). 

Proposition 6. For any integer n->2, there is an unbounded, finite, 
signed measure m (in fact infinitely many) on a quantum logic ~ ( H )  of a 
Hilbert space H, dim H = n. 
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Proof  Let dim H = 2 .  Choose  a sequence o f  one-dimensional  sub- 
spaces {M,},~__I which contains no or thogonal  pairs. Define a funct ion m 
on ~ ( H )  via 

' i f M = O  
O1 i f M = H  

m ( M )  = 

nn+l if M = M ,  
- if M = M ,  

and on other  one-dimensional  subspaces M, M • we choose m ( M )  ~ {2, -1}  
such that r e ( M )  + m ( M  l )  = 1. 

Then rn is a well-defined, unbounded ,  finite signed measure. 
Let n---3. First we take into account  the result o f  Hamel  (1905) that  

there exists a discont inuous additive functional  ~: R +  R, where R is the 
set o f  all reals. For  that it is sufficient to find a subset S c R such that every 

n 
real number  r can be uniquely represented as r = Y~i=l/3isi, where si ~ S and 
fli is rational. Using the Zorn  lemma, we may  show that this S exists and 
it contains at least two (in fact card S = c) numbers  Sl and s2, where sl is 

n 
an irrational. I f  we put  ~ (Y~=l/3~a~) =/31, then r is the functional  in question. 

Let now T # KI,  where K is a real constant  and I is the identity 
operator  in H, be a Hermit ian operator  in /4 .  Define a finite frame funct ion 
f (  x ) = ~(  ( Tx, x ) ), x c S(  H) .  We assert that  it determines a finite u n b o u n d e d  
signed measure on ~ ( H ) .  Suppose the converse. Then f is bounded .  
According to Theorem 4, there exists a Hermit ian operator  U in H with 
F ( x )  = (Ux, x) ,  x c 1-1, where F is defined via (9). Consequent ly ,  F is 
cont inuous.  

On the other hand,  the set {( Tx, x): x ~ S (H)}  is a finite closed interval 
[a, b] in R, where a and b are the minimal and maximal  proper  values o f  
T; hence a ~ b. It is evident that  there are two rationals al  and a2 such 
that alS1, a2s 2 c [a, b], a l  # 0 # 0'2, and ~1sl, 0L2s2 are s imultaneously either 
positive or  negative. Also we may find a sequence o f  positive rationals, {/3,} 
say, such that /3n ~/3  = CqSl/Ce2S2. Choose  two vectors Xl, x2~ S ( H )  such 

= - -  /~  1 / 2 ~  that ( Txi, xi) = ~isi, i 1,2. D e f i n e y , - ~  ~2, y = /31/2x2. Then  y ,  -+ y and 
F ( y , )  = 0 4, F ( y )  = a 1 # 0 ,  which is a contradict ion.  �9 

N o w  we give the fol lowing characterization o f  finite signed measures 
on ~?(H).  

Theorem 7. Let m be a finite signed measure on ~ ( H ) ,  where H has 
a nonmeasurab le  cardinal  ~ 2. The following assertions are equivalent: 

(i) m is bounded .  
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(ii) 
(iii) 
(iv) 
(v) 
(vi) 
(vii) 
(vii) 

(viii) 
(ix) 

m is representable via (1). 
m r is a finite measure. 
m-  is finite. 
[ml is finite. 
sup{lm(Px)l: Ilxll = 1} <0o. 
inf{m(P~): [Ixll = 1}> -0o. 
inf{m(P~): Ilxll = 1}> - 0 o .  

sup{m(Px):  Ilxll = 1}<oo.  
T h e r e  are two measures ma and rn2 such that rn = m~-  m2. 

Proof. The equivalence of (i) and (ii) follows from the result of Drisch 
(1979). It is clear that (i) implies (iii). 

Due to the identity re(M)= re(H)-  m(M• M ~ ~(H),  we see that 
(iii) and (iv) are equivalent, and they are also equivalent to (v). The 
proposition (6), from the part describing the properties of variations m r 
and m-,  proves the implication (v )~  (i). 

Let (i) hold. Then (vi) is valid, and (vi) implies (vii). The proof  of 
Theorem 4 entails the validity of the implication (v i i ) -  (vi). Applying the 
proof  of Theorem 4 to a finite signed measure - m, we prove the equivalence 
of (vi) and (viii). 

Suppose that (vi) hold. First we claim to show that m is totally additive 
[even without the validity of assertion (vi)]. Let {Ma: a ~ I} be a system of 
mutually orthogonal elements belonging to ~ ( H )  with the join M. Define 
a finite signed measure tz on the or-algebra 2 t of  all subsets of a set I via 
I~(QS) = O, ix(A) = m ( O a ~  a M a )  , A c L It is known (e.g., Halmos, 1953) that 
there exists a Jordan decomposition for ix,/z = + _ / x - ,  where + and ~ -  
are positive measures on 2 ~. Due to Ulam (1930), there are two subsets of 
/, D r and D- ,  with at most countably many elements such that tz §  - D r ) = 
0, / z - ( I -  D - )  = 0. Put D = D r u D  - . Then / z ( I -  D) = 
t z r ( I - D ) - t z - ( I - D )  and O<-tz~(I-D)<-tz• Thus / z ( I -  
D) =0.  

Calculate 

m ( M ) = m ( @  M ~ ) = l x ( I ) = t z ( I n D ) + t z ( I - D ) = l z ( I n D )  

= / z ( D ) =  Y. /z({a})= • m(Ma) 
a c D  a ~ D  

It is clear that, for any a ~ D,/z({a}) = 0. Hence, re(M)=Y'a~ rn(Ma). 
The total additivity of rn implies, in particular, T c T r ( H ) ,  where T 

satisfies rn(Px)= (Tx, x), x~ S(H), according to Theorem 4. Then 

r e ( M ) =  E m(Pf,)= ~ (T f , f )=tr (TM)  
i ~ A  i ~ A  

where {f~: i~ A} is an orthonormal basis in M. 
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Finally, let m hold for the Gleason theorem, that is, the formula (1) 
is valid. Putting T = T § - T- ,  where T § and T -  are the positive and negative 
parts of  the Hermitian operator T, we see that for m~(M):= t r (T§  and 
m2(M) := t r ( T - M ) ,  M �9 ~ ( H ) ,  we can obtain (ix). 

Conversely, (ix) entails (i) immediately. �9 

Theorem 8. (A. M. Gleason). Let n be a cardinal and let m be an 
n-finite semibounded signed measure with re(H)= oo on a quantum logic 
~ ( H )  of a Hilbert space H whose dimension is a nonmeasurable cardinal 
2. Then there is a unique semibounded symmetric bilinear form t with a 
dense domain such that (2) holds. 

Moreover, if m(~)ac a M0)< oo, then 

m ( a ~ A M a )  = ~a~a m(Ma)  

Proof. Due to Theorem 7, the semiboundedness of  m implies that, for 
any P � 9  ~ ( H )  with re(P)<~ we have sup{Im(Q)l: Q c  p } < ~ ,  that is, m 
is f -bounded.  A simple modification of the proof  of  Lemma 4.4, from the 
paper  of  Dvure~enskij (1985), gives us the formula (2). �9 

Remark 3. (i) The assertion of Theorem 10 remains valid even in the 
case when m is an n-finite, semibounded, m-additive function on a quantum 
logic ~ ( H )  supposing the dimension of H is a nonmeasurable cardinal ~ 2, 
and n and m are two cardinals such that n <-m, No-< m. 

(ii) We have seen that the semiboundedness of  m implies the 
f -boundedness  of  m. I do not know whether the converse implication is true. 

(iii) For an n-finite measure it is known (Dvure~enskij, 1986) that m 
is totally additive and m(M)<co iff t o M �9 Tr(H) .  For signed measures 
on nonseparable Hilbert space quantum logic a similar proposit ion is 
unknown (see also Proposition 1). I f  there are two measures m~ and mE on 
~ ( H )  such that m = m l - m 2 ,  then [m(M)]<oo  if[ t oMeTr (H) .  For a 
separable Hilbert space this equivalence is true. 
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